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Abstract

Interest in and development of mobile agent software systems has burgeoned in the
past five years. Code mobility has many attractive attributes for performance and dynamic
deployment of new distributed computing and information management applications. An
active messageis a datagram encapsulated as a mobile agent. The agent is persistent in the
network, moving from node to node under its own internal routing logic and control at the
application layer.

Active messages are particularly attractive in networks that have very unreliable links
such as wireless networks in which the nodes are mobile. Such networks experience fre-
quent link failures and other changes in topology. Active messages allow data to propagate
between nodes that may never have viable TCP/IP type connections.

In spite of the growing implementation interest in mobile agents and active messaging,
there are essentially no analytic models or results dealing with their performance. This
paper presents a simple model for active messages in a network with frequent link failures.
Using this model, we develop expressions for the expected delivery time of an active mes-
sage along one path as well as expected delivery time for duplicated messages traversing
disjoint paths between source and destination nodes.

1 Introduction

Mobile agents are programs that can migrate from computer to computer under their own
control, carrying some part of their execution state with them. Mobile agent systems have
been developed for a variety of languages and mobility models [6]. The original motivation for
this programming paradigm was to make certain distributed information processing tasks more
efficient by moving codeto the data when the data is large relative to the expected “answer”
obtained from processing the data. For example, a unique search of a large, remote database

∗This research was partially supported by National Science Foundation grant CCR-98113744, Air Force Of-
fice of Scientific Research Multidisciplinary University Research Initiative Grant F49620-97-1-0382,and DARPA
Contract F30602-98-2-0107.

†A copy of postscript may be obtained at http://dream.dartmouth.edu/ cokino.



could be efficiently done by moving a relatively small piece of code to the remote database
server, executing the code there and sending a relatively small result back to the client machine.

This is essentially the concept behind the well known and successful Java Applet. Mo-
bile agents, however, have the added abilities of making multiple hops within a network and
carry some execution state information along with them. Mobile agents are therefore direct
generalizations of the applet concept.

Most mobile agents are general programming systems with features added to support pro-
gram mobility such as state capture, forking, registration, security and network sensing. Mobile
agents can therefore easily implement “active messages”. Anactive messageis data encapsu-
lated as a mobile agent with user-defined routing logic. Mobile agent systems are excessive for
implementation of active messages since active messages require only a limited subset of the
full mobile agent functionality to perform the routing logic.

Active messages implemented as mobile agents are persistent in a network and can route
themselves. Since they are implemented at the applications layer, active messages are not
lightweight. Nonetheless, we have found the concept useful in multihop wireless network
where nodes are mobile so that disconnects are frequent and routing information may not be
reliable.

Consider for example a multihop wireless network with three nodes, A, B and C. Node A
and node C are too far apart for a direct wireless link. Node B is mobile and initially close
enough to A to be within radio range but is also initially too far from C to establish a radio
link. As node B moves from A towards node C, it moves out of the range of Node A and
into node C’s range. Nodes A and C may never have a TCP-type connection between them.
By encapsulating data as an active message from source node A for destination node C, the
message can move to node B, remain at node B until node C is reachable and then finally
migrate to the destination, node C.

This paper is an initial attempt at modeling and analyzing the performance of such an
active messaging system. Clearly, modeling of the movement of all nodes within the system
is not possible without a specific mobility model for the nodes which will be very application
specific. Our approach is to model nodes that connect sender and receiver as a linear array
with unreliable links. The state of a link is a Bernoulli process - at each time interval (which is
considered to be relatively long compared to transmission speeds), the link is either up or down
according to a Bernoulli probability distribution. If two adjacent links are up simultaneously,
the active message can propagate across both and so on. When a link is down, the message
“parks” and waits for the next link to be up so it can continue the migration to the ultimate
destination.

Section 2 analyzes this simple linear array model with independent Bernoulli links as well
as correlated fading channel links. In Section 3, we study the case of multiple paths between
sender and receiver. Active messages are duplicated and sent along disjoint paths and each
path is modeled as a linear array with identical, independent Bernoulli links. Closed form
expressions for expected arrival times are derived for active messages in both cases.

The models and results in this paper are rigorous but preliminary in the sense that much
remains to be done. Nonetheless, these results are encouraging in that they indicate that analy-
sis for this type of active messaging model is possible and that much more complexity can be
added into future, more realistic models.
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2 The Recursive Relationship

Consider a linear network model withn+1 nodes as depicted in Figure 1, where the nodes are
labelleda0, a1, · · · , an and for alli = 1, 2, · · · , n, hopi connects nodeai−1 to nodeai.
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Figure 1: A message traversing multiple hops

We consider a discrete time model, where time is divided into uniform slots. The link
failure model for each link is an independent Bernoulli process, wherepi is the probability that
hop i is up or available in a given time slot. In Maxemchuk [7], each hop is assumed to have
identical average interarrival times as well as identical average service times. In a multi-hop
wireless environment with extreme multi-path distortion, this may not be a valid assumption.

Complementary to the link being up or available, we have1 − pi as the probability that at
hop i, the link is down for a given time slot. Thus, the probability that the link is up for the
very first time during slott is equal to the probability that the link was down for all previous
t− 1 time slots.

Under the TCP/IP model, for time slots sufficiently long (e.g. at least as long as the time
out period) all links must be up to insure no message loss, so that using the Bernoulli model
described above, this occurs with probabilityp1p2 · · · pn. The probability that this event occurs
for the first time at thesth time slot is(1 − p1p2 · · · pn)s−1p1p2 · · · pn. Thus, the average time
to traversen hops in a TCP/IP model is

ETCP (n) =
∞∑

s=1

s(1− p1p2 · · · pn)s−1p1p2 · · · pn

=
p1p2 · · · pn

(p1p2 · · · pn)(1− 1 + p1p2 · · · pn)

=
1

p1p2 · · · pn

.

The above result is essentially in [1] for end-to-end performance in active networks.
In our model, we consider astore and forwardmethodology allowing a message to move

along as many hops as possible in a given time slot (i.e. no propagation delay1) without any
message loss. That is to say, all links need not be up and available for a message to traverse a
link but if all links happen to be available in a given time slot, the message will in fact traverse
all hops end-to-end. For example, in the notation of our model, a message can propagate from
nodea0 to nodea2 at time slot1 with probability p1 · p2, stall there for two time slots since
hop 3 is down for the first three time slots with probability(1 − p3)

3 and then propagate to
nodea5 at the fourth time slot (with probabilityp3 · p4 · p5). This particular event occurs with
probabilityp1 · p2 · p3 · p4 · p5(1− p3)

3.
Let P (n, t) be the probability that, under this model, the message first reaches nodean at

time slott. Recognize that the first message reaches nodean at time slott provided the message
reached nodean−1 at time slots ≤ t, stalled fort − s time slots and then traversed hopn to

1Observing effects due to propagation delay is outside the scope of this paper and is left for future work
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reach nodean at time slott. The probability of this event isP (n− 1, s)(1− pn)t−spn , which
also includes the caset = s. Since these events are independent and disjoint, we have

P (n, t) =
t∑

s=1

P (n− 1, s)(1− pn)t−spn , (1)

and

E1(n) =
∞∑

t=1

tP (n, t) . (2)

Theorem 1 The expected time for a message required to traversen hops in the model is
E1(n) =

∑n
j=1

(
1
pj

)− n + 1 .

Sketch Proof of Theorem 1.Using (1), it can be shown that

P (n, t) = pnP (n− 1, t) + (1− pn)P (n, t− 1) . (3)

Using (2) and then (3) we can separateP (n, t) into a sum of terms that is the average delay at
then− 1st hop and thenth hop as shown below:

E1(n) = pnE1(n− 1) + (1− pn)[E1(n) + 1] .

Re-writing the result above, we have the average delay equal to
∑n

j=2

(1−pj

pj

)
+ E1(1). Recog-

nizing thatE1(1) = ETCP (1) = 1
p1

, we are done.

Corollary 2 If at each hop, the probability that the link is up is equal top, thenE1(n) =
n1−p

p
+ 1 .

Proof of Corollary 2. Use Theorem 1 withpi = p for all i = 1, 2, · · · , n.

Intuitively, when all the link probabilities are equal top, we could have obtained an upper
bound average delay by using the single hop result of1

p
and multiplying this byn. This is in the

spirit of the results in [7] for exponentially distributed interarrival and service times where a
message may be restricted from traversing multiple hops in a single time slot. Moreover, Max-
emchuk’s use of the Kleinrock model [5] is perhaps too restrictive by modelingM/M/1 queues
which do not translate well for modeling the distribution of multipath channel distortion.

2.1 The Correlated Channel

In this section, we consider the case where all hops are modeled as passing through a correlated
fading channel. Specifically, we consider the multipath fading of a wireless mobile channel
modeled as a Raleigh distribution. We can then view the success and failure of a message
being transmitted over a hop approximately as a simple two-state Markov chain [4] as depicted
in Figure 2 (a). The concept of modeling success and failures of a data block for a correlated
Raleigh fading channel was first considered by [8] and further developed for TCP wireless
fading channels in [3]. We shall consider the correlation effects of a link being available during
different time slots. Note that in this subsection, the definition ofp andpi has been altered to
suite the stochastic nature of the fading channel model.
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Figure 2: A simple markov chain

For each time slot, the probability that a link is up and available will depend on whether
the link was available or not available during the previous time slot. Specifically, for hopi,
the transition probability matrix is shown in Figure 2 (b), wherepi is the probability that hop
i is up during time slots given that hopi was up during time slots − 1 (i.e. in Figure 2 (a),
being in state2 during time slots− 1 and remaining in state2 for the next state,s). Similarly,
1 − qi is the probability that hopi is up during time slots given that hopi was down during
time slots− 1 (i.e. in Figure 2 this is equivalent to being in state1 during time slots− 1 and
remaining in state1 for the next state,s). Given the channel transition matrix for each hopi we
can easily obtain the steady state probability of the hop being up,p′i and similarly, the steady
state probability of the hop being down,1 − p′i for each hopi. i.e. For each hopi we have
p′i = 1−qi

2−pi−qi
and1− p′i = 1−pi

2−pi−qi
.

Let P ′(n, t) be the probability that, under this model, the message first reaches nodean at
time slott. Recognize that a message arriving at hopn−1 for the first time at exactly time slots
must always be in state2 at time slots. Moreover, recognize that the message reaches nodean

at time slott for the first time provided the message reached nodean−1 at time slots ≤ t, stalled
for t − s time slots and then traversed hopn to reach nodean at time slott. The probability
of this event isP ′(n − 1, s)(1 − pn)qt−s−1

n (1 − qn), for s < t , andP ′(n − 1, s)pn, for s = t .
Since these events are independent and disjoint, we have

P ′(n, t) = P ′(n− 1, t)pn +
t−1∑
s=1

P ′(n− 1, s)(1− pn)qt−s−1
n (1− qn) . (4)

The method of deriving thenth hop average time is similar to the recursive method of proof for
Theorem 1 and is left to the reader.

Theorem 3 The expected time for a message required to traversen hops in the model is

E1(n) = 1 +
1− p1

(1− q1)(2− p1 − q1)
+

n∑
j=2

1− pj

1− qj

.

By using Theorem 3, when the transition matrix is equal for each hop, i.e. for all hops
i, pi = p andqi = q, we have the average delay at thenth hop equal to1 + 1−p

(1−q)(2−p−q)
+

(n−1)(1−p)
1−q

. Recognize that settingqi = 1 − pi for all i, we getp′i = pi and Theorem 3 is
equivalent to the result of Theorem 1 as expected.
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3 The “Binomial” Representation

In this section, we consider the case when the link failure at each hop is the same. As in
Corollary 2, we assume that for each link, the probability that the link is up and available isp.

SinceP (n, t) is the probability that the message reaches thenth hop for the first time at
exactly time slott, recognize that the expression forP (n, t) is simply(1− p)t−1pn multiplied
by all the possible ways to stallt− 1 times inn possible hops. i.e.

P (n, t) =

(
n− 1 + t− 1

t− 1

)
(1− p)t−1pn . (5)

This is the well known binomial distribution.
An alternate derivation for Corollary 2 can be shown using the following useful proposition.

Proposition 4 For F (n) =
∑∞

l=0

(
n+l

l

)
ql, we haveF (n) = 1

(1−q)n+1 .

The derivation for the above proposition is straight forward using a binomial identity and
is left to the reader.

The concept of transmitting identical copies of a message along disjoint paths is character-
ized by Maxemchuk as redundant dispersity routing [7], in the form of packet transmissions.
We now consider the case where sender (source node) may “spawn” identical messages in an
attempt to reduce the average message delay. Specifically, the source is allowed to duplicate
M identical messages to be transmitted to the destination alongn disjoint hops. In this model,
we assume that each message will traverse the same number of hopsn. Moreover, for any link,
the probability that the link is up and available at a given time slot is assumed to be equal top
for each time slot.

Let P (n, s) be the probability of a message reaching hopn first at time slots andp be the
probability that the link is up and available at hopn in a given time slot. We can express the
probability of a message reaching hopn first at time slots in terms of a sum of the probabilities
of a message reaching hopn− 1 first at previous time slotsl ≤ s. i.e. P (n, s) =

∑s
l=1 P (n−

1, l)(1−p)s−lp . The probability of a message reaching hopn after time slott can be expressed
by one minus the sum of all the probabilities of the message arriving before or during time slot
t. LetQ(n, t) be the probability that the message arrives at hopn after time slott. i.e.Q(n, t) =∑∞

s=t+1 P (n, s) = 1−∑t
s=1 P (n, s) . For the case ofM identical messages transmitted alongn

hops, the probability that at least one of the messages reaches hopn first at time slott, PM(n, t)
can be expressed by

∑M
i=1

(
M
i

)
P (n, t)iQ(n, t)M−i . Thus, the average time forat leastone of

theM messages to reach hopn can be expressed by

EM(n) =
∞∑

t=1

t

M∑
i=1

(
M

i

)
P (n, t)iQ(n, t)M−i . (6)

Note that whenM = 1 we get (2).

3.1 The M identical message analysis

Before stating the theorem we introduce the following notation. Let

G(M,n, q1, q2, . . . , qM) =
pMn(q1q2 · · · qM)n−1

{(n− 1)!}M(1− q1q2 · · · qM)
∏M

i=1(1− qi)
.
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Theorem 5 For a network with each link probabilityp, the average time to traversen hops
usingM identical messages is then − 1st partial derivative ofG(M, n, q1, q2, . . . , qM) with
respect to each of theqi wherei = 1, 2, . . . , M and then evaluated atqi = 1− p. i.e.

EM(n) =
∂n−1

∂qn−1
1

∂n−1

∂qn−1
2

· · · ∂n−1

∂qn−1
M

G(M, n, q1, q2, · · · , qM)

∣∣∣∣
q1=q2=···=qM=1−p

.

Proof of Theorem 5.Recognize that

PM(n, t) =
M∑
i=1

(
M

i

)
P (n, t)iQ(n, t)M−i

= (P (n, t) + Q(n, t))M −Q(n, t)M . (7)

Using (6) and (7), we have

EM(n) =
∞∑

t=1

t{(P (n, t) + Q(n, t))M −Q(n, t)M} . (8)

Let EPQ(n) be equal to the first term on the right hand side of (8) andEQ(n) be equal to the
second term on the right hand side of (8). i.e.

EPQ(n) =
∞∑

t=1

t(P (n, t) + Q(n, t))M ,

EQ(n) =
∞∑

t=1

tQ(n, t)M ,

and

EM(n) = EPQ(n)− EQ(n) . (9)

Then forEPQ(n) wherev = q1q2 · · · qM andq1, q2, . . . , qM are all evaluated atq, we have

EPQ(n) =
∞∑

t=1

t(P (n, t) + Q(n, t))M

=
∞∑

t=1

t{P (n, t) +
∞∑

s=t+1

P (n, s)}M

=
∞∑

t=1

t{
∞∑
s=t

P (n, s)}M

= pMn

∞∑
t=1

t{
∞∑
s=t

(
n− 1 + s− 1

s− 1

)
qs−1}M

= pMn

∞∑
t=1

t{ 1

(n− 1)!

∂n−1

∂qn−1

∞∑
s=t

qn−1+s−1}M

= pMn

∞∑
t=1

t{ 1

(n− 1)!

∂n−1

∂qn−1

qn−1+t−1

1− q
}M
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=
pMn

{(n− 1)!}M

∂n−1

∂qn−1
1

∂n−1

∂qn−1
2

· · · ∂n−1

∂qn−1
M

{ M∏
i=1

1

1− qi

} ∞∑
t=1

tvn−1+t−1

=
pMn

{(n− 1)!}M

∂n−1

∂qn−1
1

∂n−1

∂qn−1
2

· · · ∂n−1

∂qn−1
M

{ M∏
i=1

1

1− qi

}
vn−1 ∂

∂v

∞∑

l=0

vl+1

=
pMn

{(n− 1)!}M

∂n−1

∂qn−1
1

∂n−1

∂qn−1
2

· · · ∂n−1

∂qn−1
M

{ M∏
i=1

1

1− qi

}
vn−1 ∂

∂v

v

1− v

=
pMn

{(n− 1)!}M

∂n−1

∂qn−1
1

∂n−1

∂qn−1
2

· · · ∂n−1

∂qn−1
M

{ M∏
i=1

1

1− qi

}
vn−1

(1− v)2

=
pMn

{(n− 1)!}M

∂n−1

∂qn−1
1

∂n−1

∂qn−1
2

· · · ∂n−1

∂qn−1
M

(q1q2 · · · qM)n−1

(1− q1q2 · · · qM)2
∏M

i=1 1− qi

. (10)

Recognize thatEQ(n) is simply oneEPQ(n) with out the last term, so that

EQ(n) =
∞∑

t=1

t{
∞∑

s=t+1

P (n, s)}M

= pMn

∞∑
t=1

t{ 1

(n− 1)!

∂n−1

∂qn−1

qn−1+t

1− q
}M

=
pMn

{(n− 1)!}M

∂n−1

∂qn−1
1

∂n−1

∂qn−1
2

· · · ∂n−1

∂qn−1
M

(q1q2 · · · qM)n

(1− q1q2 · · · qM)2
∏M

i=1 1− qi

. (11)

Combining (9), (10), and (11), we have

EM(n) =
pMn

{(n− 1)!}M

∂n−1

∂qn−1
1

∂n−1

∂qn−1
2

· · · ∂n−1

∂qn−1
M

(q1q2 · · · qM)n−1(1− q1q2 · · · qM)

(1− q1q2 · · · qM)2
∏M

i=1 1− qi

=
pMn

{(n− 1)!}M

∂n−1

∂qn−1
1

∂n−1

∂qn−1
2

· · · ∂n−1

∂qn−1
M

(q1q2 · · · qM)n−1

(1− q1q2 · · · qM)
∏M

i=1 1− qi

. (12)

Corollary 6 For a single hop(i.e.n = 1) we haveEM(1) = 1
1−(1−p)M .

Recognize that forM = 1 in the above corollary, we get the expected result of1
p

for the average
time for a single message to traverse a single hop. In this particular case, the average delay is
identical to the average delay for a TCP connection described earlier. We now consider the
other extreme case.

Corollary 7 As the numberM of identical messages increases, the average time to traverse a
single hop attains the information theoretic bound of1. i.e. limM→∞ EM(1) = 1.

As a consequence of Theorem 5, forM identical messages traversingn hops,Mx(n−1) partial
derivatives need to be calculated. Specifically, for the case of two identical messages(M = 2),
2n− 2 partial derivatives need to be computed. This motivates the following result, originally
considered by Chiou and Li [2] as the ”two-copy” case, but for packets transmitted through an
M/M/1 queue.
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Theorem 8 Suppose that for each hop the probability that the hop being up is equal top. Then
for a two identical message model, the average time for at least one message to traversen hops
is

E2(n) =
∂n−1

∂qn−1
2

G2(n, q1, q2)

∣∣∣∣
q1=q2=1−p

,

where

G2(n, q1, q2) =
p2n

(n− 1)!

qn−1
2 (1 + q2)(1 + (n− 1)q1q2)

(1− q2)(1− q1q2)n+1
.

Recognize that for two identical messages, from Theorem 8, the average delay overn hops
requires calculatingn− 1 derivatives, half the number required using Theorem 5.

3.2 Simulations

SupposeTi is the total time for theith message to traversen hops, wherei = 1, 2, . . . , M . In
the simulation whereM identical messages are considered, we compute the time required for
each of theM parallel disjoint paths and choose the minimum among these times for each time
slot. i.e. For each time sample we chooseT = mini=1,2,...,M{Ti}.

The simulated average times were all computed for approximately 10000 iterations. Specif-
ically, each message end-to-end time computation was averaged over 10000 samples. Figure
3(a) displayed the theoretical values for TCP versus a single message using our store and for-
ward model. These results imply that for very unreliable links, there is a significant gain in
end-to-end delay performance over multiple hops utilizing our store and forward model. Con-
versely, for extremely reliable links (i.e.p = .9 in Figure 3 (a)), there is very little motivation
to consider this model versus TCP. Figures 3(b-c) displayed the theoretical values for a single
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message and two identical message case as well as the simulated average end-to-end delay for
link probabilitiesp = 0.2, 0.9 respectively. Note that theoretical values for the two identical
message case are computed only for the first three hops. As expected, the two identical mes-
sages case reduces the average delay relative to the single message case. However, for larger
link probabilities, the improvement may be considered negligible coinciding with the previous
results for TCP. This is reaffirmed by the simulation results depicted in Figure 3(d) where we
examine up to five identical messages on disjoint paths for link probabilitiesp = 0.2. More-
over, Figure 3(d) suggest that the amount of improvement by replicating additional identical
messages dramatically reduces.

4 Brief Closing Remarks

In this paper, we considered two methodologies for obtaining closed form solutions for aver-
age active message delay incurred over multiple hops in a network. The recursive relationship
methodology proved useful in obtaining a closed form solution over multiple hops with cor-
related link failure probabilities. Using the binomial relationship, we obtained a closed form
solution for average time of a message to traversen hops as a function of the number of du-
plicate copy messages transmitted. Although these result suggest a potential gain for networks
with low link probabilities, there is clearly a trade-off we need to investigate for buffer alloca-
tions and added link capacity utilization.
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